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Abstract. — We review three case studies 
emphasizing the role of ultramafic rocks in the 
recycling of volatiles and trace elements at convergent 
plate margins. Serpentinites are major water carriers 
in subduction zones and their breakdown liberates 
large quantities of water at sub-arc depths. The 
incompatible elements incorporated during oceanic 
serpentinization are released into the fluid phase 
produced once antigorite dehydrates to olivine + 
orthopyroxene. Importantly, the antigorite breakdown 
can trigger either wet melting or production of 
supercritical fluids in altered basalts and sediments. 
The produced fluid phases incorporate substantial 
amounts of incompatible element, initially residing in 
the crustal reservoirs. The fluid phase which exits the 
slab is highly reactive with respect to the overlying, 
silica undersaturated, mantle rocks. This leads to 
formation of reactive (ortho)pyroxenite layers, which 
filter the uprising hydrous melt/supercritical fluid to 
produce aqueous, solute-rich solutions. This fluid 
has equilibrated with peridotites and is mobile in the 
mantle. 

A consequence of these subduction fluid/mantle 
reactions is that the mantle wedge domains overlying 
the slabs can be heterogeneous in composition and 
layered, due to the presence of reactive pyroxenite 

bodies. Another aspect regards the debate whether 
supercritical fluids or hydrous melts are effective 
media for trace element transport. Since both agents 
are saturated in silica, they will react with the silica-
undersaturated mantle wedge peridotites to produce 
aqueous, incompatible trace element-rich residual 
fluids. Hence, while hydrous melt and/or supercritical 
fluids are important for scavenging incompatible 
elements from the slab, they may not be the agents 
that transfer the metasomatic subduction signature to 
the inner parts of the mantle wedges.

Riassunto. — Questo contributo riassume tre casi di 
studio che evidenziano il ruolo delle rocce ultrafemiche 
nei processi di riciclo delle sostanze volatili e degli 
elementi in traccia ai margini di placca convergenti. 
Le serpentiniti sono i sistemi maggiormente 
responsabili per il trasporto dell’acqua nelle zone di 
subduzione, dove liberano grandi quantità di acqua a 
profondità di sub-arco a causa della disidratazione del 
serpentino. Gli elementi incompatibili incorporati da 
queste rocce durante l’alterazione oceanica, vengono 
rilasciati nel fluido prodotto dalla disidratazione del 
serpentino. L’acqua rilasciata dall’antigorite può 
innescare la fusione parziale o la formazione di fluidi 
supercritici nei livelli di rocce basaltiche e meta-
sedimentarie costituenti la placca subdotta. I fusi o i 
fluidi così prodotti incorporano quantità significative 
di elementi maggiori (oltre il 50 % in peso) e in traccia 
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originariamente presenti nelle rocce crostali. La fase 
fluida rilasciata dallo slab subdotto è altamente 
reattiva rispetto alle soprastanti rocce di mantello e 
causa la formazione di livelli reattivi a ortopirosseno. 
Questi livelli ‘filtrano’ i fluidi supercritici e/o i 
fusi idrati uscenti dallo slab per produrre un fluido 
acquoso residuale ricco in soluto: quest’ultimo si 
è equilibrato con le peridotititi di mantello ed è in 
grado di migrare all’interno del wedge di mantello. 
Una conseguenza di queste reazioni fluido/mantello è 
che i dominii del cuneo di mantello soprastanti lo slab 
sono composizionalmente eterogenei e ‘stratificati’ 
a causa della presenza dei livelli di pirosseniti 
reattive. Un altro aspetto di queste ricerche riguarda 
l’efficienza dei fluidi supercritici o dei fusi idrati 
come agenti di trasporto degli elementi in traccia nel 
mantello. Entrambi gli agenti sono ricchi in silice e 
la loro reazione con il mantello libera fluidi acquosi 
mobili arricchiti in elementi incompatibili. Di 
conseguenza, mentre i fusi idrati e i fluidi supercritici 
sono importanti per incorporare elementi dai serbatoi 
crostali nello slab, essi non sono gli agenti che 
trasferiscono alle parti interne del cuneo di mantello 
l’impronta metasomatica subduttiva.

Introduction

Subduction zone fluids play a fundamental 
role in large-scale mass transfer at convergent 
plate margins, as they transfer volatiles and 
incompatible elements from crustal reservoirs in 
the subducting plates to the overlying mantle. The 
fluid transport leads to metasomatism of the mantle 
wedge peridotites and triggers partial melting in 
regions where peridotites are above the wet solidus 
temperatures. ������������������������������   Based on detailed geochemical 
studies of arc lavas, it has been inferred that 
subduction fluids are enriched in large ion litophile 
(LILE) and light rare earths (LREE) relative to the 
high field strength elements (HFSE; McCulloch 
and Gamble, 1991; B renan et al., 1994). ���� The 
crust-to-mantle exchange at subduction zones thus 
impacts on mantle re-fertilization and is a major 
driving force for the chemical differentiation of 
the Earth. The role of fluids in such a cycle has 
been increasingly emphasized in the last decade 
and an ongoing debate concerns their nature, 
composition and effective mobility (Scambelluri 
and Philippot, 2001; Manning, 2004; Hermann 
et al., 2006; Zack and John, 2007). The clear 

distinction between aqueous fluids and hydrous 
silicate melts, which characterizes all rock systems 
at relatively low pressures and temperatures, 
vanishes at ultrahigh-pressure conditions, where 
complete miscibility between water and silicate 
melts has been experimentally attained in a range 
of P-T conditions and of bulk rock compositions 
(Bureau and Keppler, 1999; Stalder et al., 2001; 
Schmidt et al., 2004; Hermann et al., 2006; Kessel 
et al., 2005). The existence of a second critical 
end point, where the wet solidus terminates and a 
supercritical liquid forms, opened the debate on the 
role of supercritical fluid phases as metasomatic 
agents in deep subduction environments. 

Studies of natural eclogite-facies rocks provide 
important constraints to the understanding of deep 
subduction fluids and their interaction with slab and 
mantle wedge rocks. The high (HP) and ultrahigh-
pressure (UHP) rocks exposed in orogenic 
terrains provide independent constraints on deep 
metamorphism in slabs, and represent exceptional 
natural laboratories on subduction-zone processes 
in a depth window between 50 and 200 kilometers. 
Some ultradeep coesite-, diamond- and majorite-
bearing rocks preserve primary solid multiphase 
inclusions (Van Roermund et al., 2002; Stoeckert 
et al., 2001; Ferrando et al., 2005; Malaspina et 
al., 2006; Scambelluri et al., 2007), which have 
been interpreted in some case as remnants of a 
supercritical fluid phase. 

Ultramafic rocks play a fundamental role in 
volatile and element recycling at convergent plate 
margins. Field studies have shown that serpentinite 
is stable at eclogite-facies conditions and hence 
can transport water into the mantle (Scambelluri et 
al., 1995). Experiments demonstrate the prolonged 
stability of antigorite serpentine to 200 km depth and 
identify hydrous ultramafic systems as exceptional 
water carriers into the Earth’s mantle (Ulmer and 
Trommsdorff, 1995; Wunder and Schreyer, 1997; 
Bromiley and Pawley, 2003). These findings have 
important consequences on subduction dynamics 
because serpentinites provide a particularly 
fertile water reservoir for arc magmatism (Ulmer 
and Trommsdorff, 1995), and because their 
dehydration can generate intermediate-depth (50-
200 Km) earthquakes (Peacock, 2001; Dobson et 
al., 2002). Serpentinites also act as low density and 
low viscosity media enabling the exhumation of 
high and ultrahigh pressure rocks (Hermann et al., 
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2000; Guillot et al., 2001; Rupke et al., 2004). The 
mantle domains overlying the subducting plates are 
other environments where ultramafic rocks play a 
key role, as the fluid/peridotite interactions at the 
slab/mantle interface can control the composition 
of fluids, which are transferred to the inner parts 
of the mantle wedges. ���������������������������  However, the understanding 
of mechanisms ruling the slab-to-mantle element 
transfer is essentially hampered by the paucity of 
suitable rock samples recording such exchange 
reactions. Most studies of supra-subduction zone 
peridotites investigated either fore-arc xenoliths, 
or xenoliths sampled at relatively shallow mantle 
levels, well above arc-magma sources (Vidal et al�., 
1989; Maury et al�., 1992; Laurora et al�., 2001). 
Information on deep metasomatism of the mantle 
wedge can be gained by studies of HP and UHP 
terrains, where felsic rocks host metasomatized 
peridotites (Brueckner, 1998; Rampone and 
Morten, 2001; Paquin et al�., 2004; Scambelluri 
et al�., 2006; Liou et al�., 2004). Such associations 
enable to study the element exchange between 
crustal and mantle rocks at pressures corresponding 
to the sub-arc depth of the subducted slab.

	 To address the role of ultramafic rocks 
in the fluid and element cycling in subduction 
zones, here we review three field-based studies 
concerning fluid release in the slab and possible 
fluid-rock interactions at a slab-mantle interface. In 
the first part of this paper we discuss the serpentine 
dehydration reaction in the slab, and its possible 
consequences in terms of interaction of de-
serpentinization fluids with sedimentary or granitic 
layers in the slab. In the second part we discuss the 
case of ultrahigh-pressure garnet orthopyroxenites 
as proxies for the reaction between mantle 
peridotites with percolating silicate-rich agents 
released from felsic and/or metasedimentary slab 
components. 

Fluid production in subducted ultramafic 
rocks

Serpentinites are key lithologies in the overall 
water cycle at oceanic and subduction settings. 
Several models assume a stratified structure of the 
slabs (e.g. Poli and Schmidt, 2002), with a lower 
ultramafic layer, an overlying mafic crust and an 
uppermost sedimentary layer. This structure can be 

inherited from a previous oceanic lithosphere, as 
documented in present-day fast spreading ridges. 
In such settings, serpentinization of the oceanic 
mantle occurs at outer rises, where fractures in the 
bending plates enhance seawater infiltration at and 
deep mantle serpentinization (Ranero et al., 2003; 
Peacock, 2001). Alternatively, part of the layered 
slab architecture may be erased by tectonic erosion 
and/or subduction deformation, e.g. boudinage of 
competent slab layers like the oceanic crust. Also, 
the lithosphere at slow and ultraslow spreading 
ridges is not layered, but is characterized by the 
vast exposure of serpentinized oceanic mantle 
at the seafloor (Cannat et al., 1995; Dick et al., 
2003). During subduction of this type of oceanic 
lithosphere, serpentinites may be at the top of the 
slab. 

Despite the considerable progress in 
understanding hydrous phase relations in 
subducted serpentinites, little is yet known about 
their geochemical features, particularly about the 
trace element fingerprints of the fluids released.  
The only natural cases of analyzed fluids 
produced during partial to complete breakdown 
of antigorite at HP to UHP concern the Erro-
Tobbio serpentinites (Western Alps) and the 
chlorite harzburgites from the Betic Cordillera 
(Southern Spain) (Scambelluri et al., 1997; 2001; 
2004a; 2004b; Trommsdorff et al., 1998). The 
high-pressure serpentinite cycle passes through 
two dehydration steps (Fig. 1): a minor “brucite-
out” reaction leading to the first appearance of 
metamorphic olivine + antigorite + fluid, and a 
major fluid release (antigorite-out) related to full 
antigorite dehydration to olivine + orthopyroxene 
+ fluid. The first reaction is recorded by many 
Alpine and Betic HP serpentinites (e.g. Liguria: 
Cimmino et al., 1979; Scambelluri et al., 1995; 
Zermatt: Li et al., 2004; Monviso: Lombardo et 
al., 1978; Nevado Filabride: Trommsdorff et al., 
1998; Puga et al., 1999). In all these settings 
the serpentinites are associated with eclogites 
(Messiga et al., 1995; Messiga et al. 1999; Puga 
et al., 1999) and display a stable assemblage of 
olivine + antigorite + Ti-clinohumite + diopside 
+ chlorite, crystallized at 500-650 °C and 2-2.5 
GPa. The “brucite-out” reaction (Fig. 1) causes a 
loss of about 2 wt% bulk water from the initial 
serpentinites. Best records of this aqueous fluid 
are primary fluid inclusions hosted by olivine, 
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diopside and Ti-clinohumite crystallized in veins 
in the Erro-Tobbio serpentinites (Fig. 2a, b). The 
inclusions generally display a salt daughter crystal 
(Fig. 2a), locally associated with ilmenite and 
magnetite: their salinity can be as high as 50 wt% 
NaClequiv and the salt composition corresponds to a 
mixture of (Na, K)Cl and MgCl2 (Scambelluri et al., 
1997). Such a composition was taken as evidence 
for deep recycling of oceanic chlorine and alkalies 
in the fluid phase (Scambelluri et al., 1997). Lower 
(present-day) average salinity of 10 wt% NaCl 
equivalents pertain to primary fluid inclusions 
present in olivine and diopside in the Betic high-
pressure serpentinites (Scambelluri et al., 2001a). 
The first dehydration fluids released during the 
serpentinite subduction cycle thus correspond to 
aqueous solutions which concentrate high amounts 
of highly incompatible halogen species. The high 
salinity of such inclusions may reflect changes in 
the composition of pristine fluids driven by water-
consuming processes, such as hydrous mineral 
crystallization in veins, or hydration of relict (dry) 
mantle minerals (Scambelluri et al., 1997).

The antigorite breakdown is the second and the 
most important dehydration reaction in subducted 
serpentinites (Fig. 1), leading to a bulk loss of 6.5-

12 wt% water. This reaction is recorded by the 
metamorphic harzburgites of the Betic Cordillera, 
a unique rock type (Fig. 2c) showing spinifex 
textured olivine + orthopyroxene (Trommsdorff et 
al., 1998), as well as coarse granoblastic olivine, 
orthopyroxene, chlorite + Ti-clinohumite. Such 
metamorphic harzburgites crystallized at 650-700 
°C and 2 GPa (Trommsdorff et al., 1998; Puga et 
al., 1999; Lopez Sanchez-Vizcaino et al. 2005) 
(Fig. 1, Field 3); however, this assemblage can also 
form at UHP conditions (Ulmer and Trommsdorff, 
1995). Olivine and orthopyroxene in these rocks 
contain primary fluid inclusions filled with solid 
daughter phases (olivine, magnetite-ilmenite, 
chlorite, apatite) and an interstitial aqueous liquid. 
These inclusions are remnants of the fluid phase 
released at the antigorite breakdown. An initial 
salinity range of 0.4 – 2 wt% NaClequiv   was 
estimated for this fluid from the bulk-rock net 
difference of water and chlorine between antigorite 
serpentinites and harzburgites (Scambelluri et al., 
2004a). The trace element compositions of these 
inclusions were measured by Laser Ablation (LA) 
ICP MS, using the 0.4 – 2 wt% NaClequiv estimates 
of the initial fluid salinity as internal standard 
(Scambelluri et al., 2004a, b). The spider diagram 
of Fig. 3 shows the trace element compositions of 
inclusions normalized to the primitive mantle. The 
fluid inclusions display appreciable incompatible 
element contents, the highest amounts pertaining 
to the light elements and the alkalies. In the 
inclusions, several elements (e.g. Boron) display 
large variations in the absolute concentrations, 
which may span over one order of magnitude. 
All fluid inclusions display comparable patterns, 
which are systematically enriched in LILE (Rb, 
Ba, Cs, Sr), B and Li with respect to the HFSE (Ti, 
Nb). These features are similar to what is observed 
in arc volcanics (Fig. 3) and are in excellent 
agreement with experimental results. Tenthorey 
and Hermann (2004) analyzed fluid compositions 
that were experimentally produced from the 
dehydration of serpentinites at high pressure. Their 
study showed that incompatible elements, which 
can be taken up during serpentinization, are fully 
released during the break down of antigorite. 

Fig. 1 – Pressure-temperature diagram showing the 
evolutionary path of the oceanic mantle at the transition from 
oceanic serpentinites (field 1), to high-pressure antigorite 
serpentinites (field 2), to olivine-orthopyroxene rocks (field 
3). Redrawn after Hermann et al. (2000).
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Interaction of fluids with subducted 
sediments

Depending on the structure of the subducting 
lithosphere, the serpentine breakdown fluids may 
either (i) direcly infiltrate the mantle wedge, or 
(ii) react with crustal rocks of the subducted slab. 
The first case occurs if the slab is not layered (i.e. 
slab serpentinites are close to the interface with 
the mantle wedge) or if the fluid is channelled. 
This leads to a direct interaction of the antigorite- 
breakdown fluids with the mantle, which would 
acquire the signature shown in Fig. 3. The second 

case occurs if slabs are layered and crustal rocks 
are above the serpentinized oceanic mantle, or are 
mixed with serpentinite material in mélange zones 
at the top of the slab (Spandler et al., 2007). Figure 
4 portrays the wet solidus curves for the various 
slab components (Hermann et al., 2006; Kessel et 
al., 2006) with the aim to explain the interaction 
between serpentinite fluids and crustal slab rocks.  
The wet peridotite solidus reported in Fig. 4 is by 
Stalder et al. (2001), who determined the second 
critical end point for this system. Also reported in 
Fig. 4 are the boxes referring to the crystallization 
conditions of the HP Erro-Tobbio serpentinites, of 

Fig. 2������������������������������������������������������������������������������������������������������������                – ���������������������������������������������������������������������������������������������������������             A: primary salt-bearing fluid inclusions in diopside from an olivine vein, Erro-Tobbio Unit (Scambelluri et al., 1997). 
B: olivine, magnetite, diopside  and Ti-clinohumite vein in high-pressure serpentinite (Erro Tobbio Unit, Western Alps, Italy). 
C: Chlorite harzburgite with spinifex-like texture. In light grey is orthopyroxene in brown grey is olivine. ��������������������  (Cerro del Almirez, 
Bètic Cordillera, Spain; Trommsdorff et al., 1998). ���������������������������������������������������������������������         D: primary fluid inclusions rich of solid phases (magnetite, olivine 
chlorite) and with aquoeus liquid, in olivine from the chlorite harzburgites (Scambelluri et al., 2001; 2004a).
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the UHP Cignana ophiolites, and of the HP Bètic 
harzburgites. All peak conditions are close to the 
wet solidus and to the second critical endpoint 
of pelitic and granitic systems. Because of the 
inverted isotherms in subduction zones, fluids 
released at 650-700°C during antigorite breakdown 
will heat up as they rise. As a consequence, ������these 
uprising fluids will likely trigger the production of 
melts or supercritical liquids in the sedimentary 
layers at 750–800°C (Hermann and Green, 
2001). Subducted sediments and altered oceanic 
crust are the major hosts of incompatible trace 
elements in the subducted crust (Tenthorey and 
Hermann, 2004). The great majority of LILE is 
hosted in phengite in these rock types (Hermann, 
2002; Spandler et al�., 2003). Because phengite 
is stable to temperatures of 950-1000°C at sub-
arc pressures (Schmidt et al�. 2004; Hermann and 
Green, 2001), fluid-absent melting of phengite-
bearing metasediments and altered oceanic crust is 
hardly achieved at sub-arc conditions and it is not 
regarded to be a viable process to produce LILE 
enriched slab fluids. In contrast, in the presence of 
an externally-derived fluid, sediments and altered 
oceanic crust will undergo fluid-present melting 

and LILE will preferentially partition into the 
fluid phase (Hermann and Green, 2001; Kessel et 
al�., 2005). This demonstrates that fluids liberated 
from subducted ultramafic rocks play a key role in 
scavenging trace elements from fertile subduction 
lithologies such as altered basalts and sediments. 

Interaction of subduction zone fluids with 
the mantle wedge

Understanding the interaction of hydrous melts/
supercritical fluids with the mantle wedge is crucial 
to define the volatile and trace element recycling 
in subduction zones. The garnet orthopyroxenites 
from the Maowu Ultramafic Complex (Dabie 
Shan, China) are excellent proxies to unravel the 
slab-to-mantle element transfer at UHP conditions. 
This body consists of layered meta-harzburgites, 
garnet orthopyroxenites and websterites associated 
with coesite-eclogites. Pyroxenites are locally 
bounded by phlogopite-rich layers, and are hosted 
by garnet-coesite-bearing gneisses. In this terrane, 
gneisses and ultramafic rocks share a common 
UHP history with peak conditions of 4-6 GPa and 

Fig. 3 – Trace element compositions of inclusions in olivine from the chlorite harzburgites (Scambelluri et al., 2004b).
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700-750°C (Liou and Zhang, 1998). Although 
these rocks are not direct samples of a mantle 
wedge, textural and geochemical data demonstrate 
that they represent former garnet–peridotites 
metasomatized by a crust-derived SiO2-rich fluid 
phase at ~ 4.0 GPa and ~ 750°C (Malaspina et 
al., 2006). The petrographic observations indicate 
that the garnet orthopyroxenites preserve a relict 
paragenesis consisting of olivine + orthopyroxene1 
+ garnet1 ± clinopyroxene ± Ti-clinohumite 
overgrown by coarse-grained orthopyroxene2 
(Fig. 5a, b) associated with porphyroblastic 
inclusion-rich garnet2 (Fig. 5c). Orthopyroxene2 
replaces earlier olivine (Fig. 5b) and can include 
fine-grained garnet1 and orthopyroxene1. This 
indicates that former mantle phases (i.e. olivine, 
garnet1 and orthopyroxene1) were replaced by a 
Si-enriched phase. The major and trace element 
compositions of whole-rocks and mineral phases 

support the textural evidence that the protolith of 
these pyroxenites was a peridotite. They display 
high Mg# and Ni concentrations and chondrite-
normalized REE patterns resembling the ones of 
a depleted mantle (Malaspina et al., 2006). With 
respect to the inferred harzburgite protholith, 
however, the Maowu orthopyroxenites are 
enriched in SiO2 and Al2O3. LREE enrichment 
characterizes the bulk rocks as well as the replacive 
orthopyroxene2. Such major and trace element 
compositions of the garnet–orthopyroxenites have 
been attributed by Malaspina et al. (2006) to the 
infiltration of a metasomatic melt-like fluid phase 
rich in SiO2, Al2O3, and incompatible elements 
sourced from the country-rock gneisses at peak 
UHP conditions. Reaction of such a SiO2-rich 
hydrous fluid phase with the peridotite results in a 
SiO2- and Al2O3-loss from the fluid phase to form 
the garnet orthopyroxenites. On the other hand, 
part of the H2O component of the metasomatic 
agent cannot be accomodated by the newly formed 
anhydrous phases Opx2 and Grt2, and evolves into 
a residual aqueous fluid. This free fluid is then 
occasionally trapped by the growing Grt2 into 
primary polyphase inclusions (Fig. 5c, d, e, f).

The polyphase inclusions in the Maowu 
orthopyroxenites therefore provide information 
on the nature and composition of the residual fluid 
produced after interaction of the peridotite with the 
melt-like fluid phase. They display regular negative 
crystal shapes (Fig. 5c, d, e, f) and contain a solid 
assemblage (oxide + amphibole + chlorite ± talc 
± mica ± apatite) showing constant volume ratios, 
to suggest that they represent daughter phases that 
formed from a compositionally homogeneous 
fluid phase primarily trapped by the UHP garnet. 
To constrain the nature of such a fluid phase the 
inclusions have been re-homogenized in a piston 
cylinder experiment at P=3.5 GPa and T = 900°C 
(Malaspina et al., 2006). The re-homogenization 
experiment produced a hydrous porous quench, 
indicating that the UHP fluid in the inclusions was 
a solute-rich aqueous fluid rather than a hydrous 
melt. The composition of this fluid has been 
investigated with LA-ICP-MS analyses performed 
on the bulk of both polyphase and experimentally 
re-homogenized inclusions, following the method 
developed by Heinrich et al. (2003). The results 
give a reliable estimate of the trace element 
composition of the trapped residual fluid. As shown 

Fig. 4 – Wet solidus curves for ultramafic, mafic, pelitic and 
granitic systems, showing the second critical end points. 
The endpoint for ultramafic systems lies at much higher 
pressures (10 GPa). Boxes refer to the peak P-T conditions 
for different serpentinite and crustal HP and UHP units of 
the Alps and of the Betic Cordillera. Redrawn and modified 
after Hermann et al. (2006).
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in Fig. 6, both polyphase and re-homogenized 
inclusions display very high concentrations of 
incompatible and fluid-mobile trace elements, with 
positive spikes in Cs, Ba, Pb, Sr, and a high U–Th 
ratios. These chemical characteristics provide 
evidence that the metasomatic agent leading to the 
formation of the orthopyroxenites had a crustal 
affinity. The residual aqueous fluid retained most 
of the incompatible elements that were present in 
the reacting hydrous-melt. In fact, the whole-rock 
composition, represented by the white diamonds 
in Fig. 6, shows relative enrichments only in 
LREE, whereas most of the fluid-mobile elements 
are below the detection limit. The reason for this 
observation is that the rock-forming minerals 
– orthopyroxene and garnet – are not able to 
incorporate these incompatible elements. The low 
LILE contents in the whole-rocks imply that such 
LILE-enriched fluid largely escaped the system 
and was only occasionally trapped in garnet2 to 
form the polyphase inclusions. This fluid is able to 
migrate up into the mantle where it may enhance 
crystallization of metasomatic amphibole (below 3 
GPa; Fumagalli and Poli, 2005) and/or phlogopite, 
to ultimately reach the locus of partial melting in 
the mantle wedge.

Discussion and conclusions

The presented case studies highlight the 
importance of ultramafic rocks in the recycling 
of volatiles and trace elements at convergent 
plate margins. Serpentinites are the main carriers 

of water in subduction zones and the breakdown 
of antigorite liberates large quantities of water at 
sub-arc depths. Moreover, incompatible elements 
incorporated during oceanic serpentinization 
will be released into the HP-UHP fluid phase 
once antigorite breaks down. Probably the most 
important effect on the trace element recycling in 
subduction zones is that fluids derived from the 
antigorite breakdown will trigger wet melting in 
altered basalts and sediments. The produced melts/
supercritical fluids incorporate substantial amounts 
of incompatible elements, intially residing in the 
crustal reservoirs. Fig. 7 describes a possible deep 
subduction environment, where the aqueous fluids 
released by the serpentinites infiltrate an overlying 
meta-sedimentary layer to enhance either its partial 
melting or the production of silicate-rich fluids. 
The fluid phases that exit the slab will be highly 
reactive to the surrounding mantle peridotites. 
This will produce the orthopyroxenite layers 
described in the Maowu examples and filter the 
uprising hydrous melt-supercritical fluid phase. 
The fluid uprising from such filtering zone will be 
an aqueous, solute-rich solution with composition 
comparable with the one portrayed in Fig. 6. This 
fluid equilibrated with mantle rocks through the 
filtering process and is mobile in the mantle. 

A first implication of our case studies thus 
concerns the mantle wedges above subducting 
slabs, which can be heterogeneous in composition 
and layered, due to the presence of reactive 
pyroxenite bodies. Si-enrichment in the mantle was 
claimed by previous studies of supra-subduction 
mantle domains affected by re-fertilization and/
or formation of reactive pyroxenites (Kelemen et 
al., 1998; Yaxley and Green, 1998; Garrido and 
Bodinier, 1999; Groove et al., 2005). Also, Sobolev 
et al. �����������������������������������������     (2005) proposed that interaction between 
recycled crust and mantle peridotites produces 
pyroxenites in the deep mantle, and melting of such 
a mantle might contribute to the genesis of ocean 
island basalts. Here we have detailed a feasible 
mechanism by which the supra-subduction mantle 
reacts with slab-derived silicate agents to produce 
large zones where pyroxenites dominate. 

	 One interesting aspect of this work is that 
the debate whether trace elements are transported 
in supercritical fluids or hydrous melts is after all 
not that essential. Because both these agents are 
saturated in silica, they will inevitably react with 

Fig. 6�������������������������������������������������������        – ����������������������������������������������������     Trace element compositions of multiphase inclusions 
from Maowu orthopyroxenites and of the host rocks. ������After 
Malaspina et al. (2006).
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the silica-undersaturated mantle wedge as outlined 
in the Maowu case study. During this reaction the 
fluid phase will be transformed, as Si and Al are 
extracted from the melt/supercritical fluid, leaving 
an aqueous, incompatible trace element enriched 
residual fluid. Hence, while hydrous melt and/or 
supercritical fluids are important  for scavenging 
incompatible elements from the slab, they are 
unlikely the agents that transport the metasomatic 
trace element signature to the source of the arc 
magmas. Only in the case that the released fluids 
are channelled in pyroxenite dikes in the mantle 
wedge, the reaction with mantle olivine would 
be inhibited and the slab-derived Si- and trace 
element-rich liquids might migrate into overlying 
hotter regions of the mantle wedge. 
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