QUELQUES ENVIRONNEMENTS DES FACIES NODULEUX MESOGEENS

Introduction

Nodules et nodulisation

Les facteurs fondamentaux (fig. 1) de la nodulisation (Elm, 1981a) sont ceux qui provoquent une hétérogénéité dans le sédiment. Cette hétérogénéité peut être initiale (séries alternantes marnes-calcaires, joints de stratification) et être à l’origine d’une nodulisation mécanique (boudinage, stylolithes, liserés de compaction, cisaillement, striction; cf. Coucray & Michiel, 1981). La bioturbation peut favoriser la dissociation des bancs calcaires.

Les plus souvent l’hétérogénéité est créée ou accentuée par l’action des organismes dont l’action s’accroît quand la sédimentation se ralentit ou s’interrompt. La bioérosion sur sédiment compact modélise les surfaces (hardgrounds, firmgrounds). Les perforations et l’hydrodynamisme se combinent pour provoquer une dislocation d’autant plus spectaculaire que les bancs sont minces. Ainsi se diversifient ces galets dont le microfaciès peut être très semblable et même identique à celui du sédiment dans lequel ils ont été cimentés (fig. 2, 3). Ces galets peuvent être revêtus d’enveloppes qui peuvent latéralement passer à des encroûtements stromatolithiques. De tels faciès sont particulièrement bien développés dans le Trento, en Sicile et en Oranie. Ils permettent de reconnaître des hauts-fonds (parfois émergés) liés à l’existence de charnières paléotectoniques. Ces derniers correspondent au rebord saillant de blocs basculés.
La bioturbation intervenant sur des sédiments meubles ou plastiques modèle les bancs calcaires en donnant d’abord de faux nodules non détachés de leur support (structure pseudoduleuse). Les surfaces des bancs prennent alors une allure sculptée. De faux nodules peuvent apparaître aussi en section dans la masse des bancs. Ce sont alors des sections circulaires de terriers dont les bords, imprégnés de mucus, ont subi une diagenèse différente de celle de la matrice. Dans certains exemples (fig. 4, 5), l’allure hétérogène de ces faux nodules est encore accentuée par le brassage intramatriciel qui donne un aspect tourbillonnaire à ces éléments, en particulier aux filaments («posidonoxymes»: Bositra bachi). La bioturbation affecte plus ou moins profondément le sédiment calcaire. La limite inférieure correspond à un passage plus ou moins net entre la partie brassée et la zone intacte (fig. 6, 7). Cette limite peut être induite par suite de l’action du mucus sécrété par les organismes. Elle peut ensuite être exhumée par suite du vannage de la masse superficielle bioturbée («bioturbati»). Ainsi apparaît un autre type de surface sculptée (surface ferme: firmground); dans cet exemple, le banc, tel qu’il est conservé, est homogène dans la masse.

L’action des organismes fouisseurs peut aboutir à un morcellement plus poussé du sédiment. Les réseaux plus ou moins réguliers de pistes et de terriers peuvent découper un niveau compacté en un champ de nodules résiduels généralement bien calibrés. La bioturbation postérieure pourra les boussouler et les brasser, donnant une impression de désordre. Les ammonoides se trouvent alors en tous sens (vertical, oblique, horizontal). De telles dispositions peuvent souvent être considérées comme caractéristiques de la bioturbation quand le désordre ne peut être attribué à l’énergie du milieu, ce qui est le cas général des sédiments micritiques. L’exagération de cette action provoque aussi de véritables remaniements biologiques, ce qui explique peut être certaines anomalies des listes fauniques dans les coupes du «Rosso Ammonitico» même quand elles ont été réalisées «banc par banc». Par ailleurs, le phénomène de «brassage intramatriciel» peut être à l’origine d’une usure inhabituelle des organismes, frottés les uns contre les autres; cette abrasion est encore plus marquée lorsque le sédiment comporte des silts quartzceux.

Quand il n’y a pas dissociation du sédiment affecté par l’action des organismes fouisseurs, le bioturbation subit généralement une diagenèse différente de celle de la matrice. Il peut rester plus plastique et les éléments, dissociés (nodules) ou non s’emboutissent les uns contre les autres; cette abrasion est encore plus marquée lorsque le sédiment comporte des silts quartzceux.

Fig. 1 — Enchaînements génétiques de la diagenèse noduluse (nodulisation).

— Legami genetecì della diagenesi nodulare (nodulizzazione).

Fig. 2-3 — Nodules correspondant à des galets de biomierite à filaments (a) remaniés dans un ciment de facies semblable. Les différences ne portent que sur la quantité de radiolaires et de spicules, très abondants dans le gale et rares dans le ciment. Le contact (b) est net. Par place (c), on remarque que les filaments (Bositra) prennent une disposition fluidale due à la compaction différentielle entre un nodule plus lithifié et la matrice. Fig. 2: x 5,5 (sur toutes les figures, la barre noire mesure 8 mm) Fig. 3: x 16.

— Noduli corrispondenti a dei eiottoli di biomierite a filamenti (a), rimanezzati in un cemento di facies simile. Le differenze riguardano la quantità di radiolari e spicole, molto abondanti nei eiottoli e rari nel cemento. Il contatto (b) è netto. Si può osservare (c) che i filamenti (Bositra) hanno una disposizione fluidale dovuta alla compattazione differenziale fra un nudo più litificato e la matrice. Auleianino di Monte Serrone sopra le «Mura della Formazione del Monte Serrone». Fig. 2: x 5,5 (su tutte le figure la linea nera misura 8 mm) Fig. 3: x 16.

Fig. 4-5 — Structure pseudoduleuse provoquée par la bioturbation. Les terriers a, b sont délimités par une zone plus obscure (c) résultant probablement de l’impregnation par le mucus. L’action de l’organisme est à l’origine de l’aspect tourbillonnaire (d) de la partie centrale par suite du brassage des tests de Bositra. Le microfacies est celui d’une biomierite à filaments, radiolaires et spicules. Ammonitico Rosso inférieur de La Pergola près Grezzana. Bathonien Plateau de Trente. Fig. 4: x 4; Fig. 5: x 10.

— Struttura pseudoduleuse provocata dalla bioturbation. I perforanti (a,b) sono delimitati da una zona più scura (c) derivata probabilmente da impregnazione di mucus. L’azione dell’organismo è all’origine dell’andamento concentrico (d) dei gusci di Bositra nella parte centrale. La microfacies è un biomierite à filamenti, radiolari e spicole. Ammonitico Rosso inferiore di La Pergola presso Grezzana. Bathoniano (Platteforma di Trento). Fig. 4: x 4; Fig. 5: x 10.
Fig. 6 — Contact entre bioturbat (a) et matrice (b) dans une biomierite. Ammonitico Rosso; Tourcien di Djebel-es-Sekika (Algérie occidentale). x 6.
Noter la présence de fragments d'échinodermes, de nécros d'ammonites. La matrice semble essaimer dans le bioturbat: il s'agit en fait de zones qui n'ont pas été brassées par les organismes.

— Contatto fra bioturbato (a) e matrice (b) in una biomierite, Ammonitico Rosso; Tourciano di Djebel-es-Sekika (Algeria occidentale). x 6.
Notare la presenza di frammenti di echinodermi e nuclei di ammoniti. La matrice sembra continuare nel bioturbato: si tratta di zone che non sono state rimosse dagli organismi.

Fig. 7 — Contact plus complexe entre bioturbat (a) et matrice (b) donnant une structure pseudonoduleuse compliquée par les phénomènes de striction (c). Tourcien moyen de Sasso di Pale (sous-zone à Sublevisoni). x 4, 18.

— Contatto più complesso fra bioturbato (a) e matrice (b), a struttura pseudonodulare complicata da fenomeni di strizione (c). Tourciano medio di Sasso di Pale (sottozona a Sublevisoni). x 4, 18.

Fig. 8 — Nodules (a) préalablement renoués puis affectés par la striction (b). Noter, comme sur les fig. 2-3, la différence de nature entre galets et matrice. Niveaux bréchiques de l'Aalenien du Monte Serrone. x 6.

— Noduli (a) rimaneggiati, in seguito interessati dall'indurimento (b). Notare la differenza fra cuotoli e matrice, come sulle fig. 2-3. Livelli brecciati dell'Aaleniano di Monte Serrone. x 6.
Si le bioturbat est plus poreux que la matrice, il subit une lithification et une recristallisation plus précoce. On passe alors à des structures pseudonodules.
Toutes ces structures peuvent être exagérées par compaction différentielle. Des phénomènes de pression-dissolution affectent les contacts entre nodules ou pseudonodules compacts. La striction (Coudray & Michel, 1981) provoque un morcellement complémentaire (fig. 7, 8).

Bioturbation, bioerosion et nodulisation dans les séquences noduleuses des séries marneuses

En raison de l’origine polygénétique des faciès noduleux, il n’est pas possible de caractériser un environnement mobile de charnière paléotectonique par l’existence d’un seul élément isolé. Certaines structures noduleuses ou pseudonodules se développent dans les bassins épicontinentaux («choin», crête noduleuse). En conséquence, il faut établir la présence d’un cortège noduleux pour reconnaître les bordures des bassins mobiles au cours de certains stades de leur évolution précoce (fig. 9). En outre, l’interprétation d’un seul élément du cortège noduleux ne peut donner de renseignement fiable sur l’environnement de tout le bassin et, en particulier, sur la profondeur.

Par ailleurs, les phénomènes de compaction différentielle peuvent oblitérer les effets de la bioturbation dans les «ammonitico-rosso» (ou griottes) marneux qui appartiennent aux faciès alternants. Les travaux résumés ici tentent de bien séparer les éléments de la nodulisation de telles séries.

Fig. 9 — Situation paléogéographique des principaux environnements de faciès noduleux. Le modèle proposé est relativement indépendant de la profondeur réelle et il accentue l’importance de la physiographie du bassin. Les exemples cités sont de l’Apennin de Marche.

1 – Le faciès « griotte » de la zone III du Frasnien d'Ouarourout (Sahara; sillon de l'Ougarta).

Pendant le Paléozoïque supérieur, le sillon de l'Ougarta constitue une zone instable située sur la zone de contact entre les cratons du Sahara central et du Sahara occidental (Menckhoff, 1932; Petit, 1952; Fabre, 1978). Au cours du Dévonien, l'environnement de la région de Beni-Abbès et d'Ougarta évolue depuis une plate-forme épinitérique subissant des influences prodeltaïques (Dévonien inférieur) jusqu'à un sillon étroit et instable où se déposent les sédiments marins calcaires devenant noduleux (Dévonien moyen et supérieur). À la limite Dévonien-Carbonifère, les premières compressions amènent des grès à signification de flysch (grès d'Ougarta). La région de Beni-Abbès permet donc d'illustrer l'évolution d'une marge continentale présentant de nombreuses similitudes avec les événements qui affectent les domaines externes de l'orogène alpin au cours du Mésozoïque.

Au début du Dévonien moyen, une accélération de l'enfoncement amène la disparition progressive des calcaires nériques. Il leur succède des séquences de calcaires micritiques et de marnes à fossiles pyritiques particulièrement bien exposées à l'Érg Djebel. On note, ainsi, dans les niveaux à Pinacies jugleri, l'alternance de bancs calcaires à faune de taille normale (orthocones, goniatites) et d'ensembles marneux à faunes naines. Ces dernières comprennent aussi bien des ammonoides (pyritiques avec phragmocônes) que des brachiopodes. On peut supposer que ce nanisme résulte d'un isolement provoqué par une différenciation morphologique du sillon, en relation avec des saccades d'enfoncement. Cet isolement amène des conditions relativement défavorables sur le fond, entrave les dépôts des céphalopodes et gène la répartition de la nourriture.

Ensuite, au Frasnien, s'installe le faciès griotte. Nous donnerons ici une description rapide de la coupe de la zone III (Petit, 1952) d'Ouarourout (fig. 10). Elle montre une alternance marne-calcaire, épaisse de plus de 40 m, plus marneuse à la base qu'au sommet. Les faciès rencontrés sont:
— des marnes, feuilletées à la base, puis grumes- leuses (nODULES résiduels, nODULES en désordre);
— des marnes à septarias;
— des calcaires homogènes terminés par des surfaces sculptées (hardgrounds et firmgrounds);
— des calcaires à nODULES dissociés en minces niveaux centimétriques séparés par des lits argileux;
Il n'y a pas de striction dans la masse des bancs homogènes à surface sculptée (A4). Dans les bancs superposés (B6) l'intensité de la nodulisation est directement fonction de la profondeur de penetration de la biorupturbation et de son intensité.

Dans la suite de la coupe, on constate que la structure nodulaire s'accentue au fur et à mesure que les bancs calcaires deviennent plus rapprochés. Les bancs épaiss (F4) peuvent être entièrement constitués par des nODULES joints à la manière des pièces d'un puzzle. On note aussi que l'augmentation de la fréquence des bancs calcaires s'accompagne d'une multiplication des surfaces d'arrêt de sédimentation propice à l'activité des organismes benthiques et des fouisseurs. On peut ainsi établir qu'il y a relation directe entre teneur en carbone, ralentissement de la sédimentation, activité des organismes fouisseurs et nodulisation. Dans ce cas, le ralentissement de la sédimentation ne correspond probablement pas à une diminution de la profondeur, mais à un aplatissement momentané de la morphologie locale et, donc à un stade de vacuité.

La séquence nodulaire de l'ensemble F12-13 montre l'évolution du démantèlement des bancs calcaires:
— bancs calcaires, compacts à surface supérieure sculptée; leur semelles montrent généralement des poinçonnements dus à la compaction différentielle;
— bancs composés de nODULES jointifs dont les contacts sont affectés par de nombreuses figures de pression-solution; ces niveaux correspondent probablement à une résédimentation de nODULES résiduels, remaniés et concentrés lors d'une phase d'agitation ou affectés par des glissements hydrauliques;
— marnes noduleuses: les nODULES centimétriques sont généralement alignés sauf s'ils ont été brassés par une biorupturbation ultérieure; il s'agit de nODULES résiduels résultant du démantèlement de bancs calcaires.

2 – L'Ammonitico-Rosso des bassins élémentaires de Marche-Ombrie (Apennin Central; Toarcien-Bajocien).

Le caractère rythmique de la sédimentation permet une analyse précise du rôle joué par les organismes dans certains mécanismes de la diagenèse nodulaire.

Au cours du Toarcien-Bajocien, l'Apennin Central continue de subir la tectonique de blocs basculés qui fut à l'origine de la dislocation de la plate-forme faunique du « Calcare Massiccio » (Bernoully, 1967). Il en résulte une structuration en une mosaique de petits bassins subsidents, décalkiométriques, séparés par d'étroits hauts-fonds épisodiquement émergés (Cantamore et alii, 1971; Elmi, 1981b; Farinacci et alii, etc...), d'Ombrie (Sasso di Pale; Mariotti et alii, 1979), du Latium (Monte Lacerone; Farinacci, 1967), il se développe des calcites pseudonodules faciès « Bugarone » des « Calcare Nodulari Nociola del Nerone »; Toarcien supérieur-Bajocien moyen; fig. 11) succédant à des horizons condensés où à des launes du Toarcien inférieur et moyen. Sur ces zones hautes, la limite supérieure des faciès « Buga- rone » est généralement soulignée par des hardgrounds. La masse du sédiment a été fortement biorupturée et le bioturbat a subi une intense dolomitisation (Elmi, 1981a, pl. 1, fig. 3-4; pl. 2, fig. 3, 8, fig. 12). L'âge bajocien inférieur-moyen de la fin de ces calcites a bien été établi à Sasso di Pale par Palmini (in Mariotti et alii, 1979). Au Monte Nerone (Inferraccio, Campo a Bello), cet âge est confirmé par une riche faune de Stephanoceratidens.

Des faciès à nODULES hydrauliques glissés (Calcare a noduli verdi) se développent sur les pentes (Inferraccio). Ils passent distalement à des Ammonitico-Rosso (Burano) souvent affectés par des glissements (Rosso) et des éboullements (Gorgo a Cerba- ra). Les faciès de bassin sont des alternances marnes-
Fig. 10 — Coupe de la zone III du Frasnien d'Ouarourout. 1 = marne; 2 = calcaires; 3 = surfaces sculptées; 4 = nodules résiduels; 5 = bioturbations, niveaux pseudonoduleux; 6 = septarias; 7 = poinçons de compaction; 8 = brassage; 9 = bivalves; 10 = brachiopodes; 11 = débris d'échinodermes. Les ammonoides sont abondants sur toute la section.

— Sezione della zona III del Frasniano d'Ouatourout. 1 = marna; 2 = calcari; 3 = superfici elaborate; 4 = noduli residuali; 5 = bioturbazioni, livelli pseudonodulari; 6 = septarine; 7 = strutture di compattazione; 8 = rimessolamento; 9 = bivalvi; 10 = brachiopodi; 11 = frammenti di echi nodermi. Le ammoniti sono abbondanti in tutta la sezione.

Fig. 11 — Corrélations de la série stratigraphique du Tourci en-Bajocien dans l’Apennin de Marche (chaîne du Monte Nerone).
— Correlazioni della serie stratigrafica del Toarciano Bajociano nell’Appennino marchigiano (catena di Monte Nerone).

A Valdorbia, l’Unité del Sentino se compose d’une suite rhymthique de séquences (Colacich & Pialli, 1971). Les séquences élémentaires sont plus marneuses et plus épaisse à la base (zones à Serpentinitus et à Bifrons) qu’au sommet (Elmi, 1981b; fig. 4-6). Elles comprennent la succession suivante:

a) banc de calcarénite grise; c’est une véritable turbidite calcaire à laminations, flute-casts, bioclastes et silts calcaires; ammonites de taille normale;

b) marnes feuilletées et calcaires parfois laminés; ce terme est surtout bien développé dans les séquences épaisses où il constitue un rappel de l’organisation alternative de la sédimentation du fond de bassin;

c) calcaires pseudonodules; le démantèlement biologique est incomplet;

d) marnes grumeleuses à nodules centimétriques résiduels, témoins du démantèlement de bancs calcaires décimétriques.

e) argiles sombres, vertes, azoïques et sans traces de bioturbation; le fond et les boues deviennent anoïques.

A Valdorbia, on note aussi l’existence de faunes naines s’adaptant aux conditions d’isolement qui se développent en fin de séquence. Une telle situation est semblable à celle qui a été décrite ci-dessus pour les faunes pyriteuses naines de l’Erg Djemel. Il s’agit d’un effet de la différenciation morphologique en gouttière étroite ou en ondulate. D’autres exemples de ces environnements protégés par une restriction de la circulation profonde existent dans le NW de l’Algérie, en particulier au pied de l’escarpement qui longe la charnière paléotectonique du Djebel Nador de Tuirat. Le phénomène de naisme affects aussi bien les brachiopodes que les ammonites. Dans les cas étudiés, l’effet de la profondeur relative est accentué par l’étroitesse et le moindrement des bassins dont le fond est ainsi parcellé d’obstacles à la circulation des eaux profondes, au moins lors de certaines phases de l’évolution tectono-sédimentaire.

La grande proximité des hauts-fonds et des ombriles subsident laisse présumer, qu’après leur développement juvénile, certaines ammonites s’éloignent des rivages et gagnent les branches d’eau ou règnent des conditions défavorables et où elles sont piègées par suite de l’existence d’obstacles.

Conclusion

Les enchainements horizontaux et verticaux des différents éléments du cortège noduleux permettent de mieux connaître les effets de la paléotectonique.

Les exemples étudiés ou évoqués ici s’organisent en deux grands types de séquences, contigués ou superposées:

— séquences de charnière (ou de crête): séries réduites, courtes alaires et nodules revêtus, bioérosion dominante; il en résulte des ammonitico-rosso calcaires à structure généralement pseudonodulaire; la profondeur peut enormément varier;

— séquences d’escarpement: séries épaisse avec turbidites, courants, phénomènes gravitaires, bioturbation dominante (ammonitico-rosso et griottes marneux, séries grumeleuses); la profondeur s’inscrit dans le domaine épiocéanique, (domaine marin ouvert); la sédimentation est pélagique, ce qui n’est pas un critère bathymétrique.

SUMMARY

Nodular and associated facies (rosso-ammonitico, lumpy marls and limestones) are bound to peculiar physiographies and environnments which are developed during definite episodes of the rift of furrows and basins. These facies are indicative of palaeotecnic hinges and they are characteristic of varied environments: flat seamounts sustaining only a slow sedimentation, steep slopes (with gravity., or turbidity., or grain flows), flat bottom of basins, narrow furrows.

The study of the «griotte» facies of the Saaur Furrow (Devonian; Western Sahara) allows to establish a direct relation between the carbonate ratio, the slowing down of sedimentation, the intensity and the penetration of bioturbation and 2) the degree of dissociation of the residual elements. The sequence changes from pseudonodular limestones, ended by firmgrounds but without internal disturbances within the beds, to residual nodules which can be mixed by second generation bioturbation.

In the central Apennines, rhythmic sequences of the toarcian «Unita calcarea-marina del Sentino» suggest that a strong relationship exists between the effects of the bioturbation and the sedimentation.

Concerning the palaeobiology, the restraining conditions existing within the more or less isolated furrows or umbilicus-like basins led sometimes to the emergence of dwarf faunas which are affected by atypical variability.

RIASSUNTO

Lo sviluppo delle facies nodulare e delle facies associate (rosso ammonitico, marne e calcari grumosi) è legato alle morfologie sottomarine realizzate durante fasi ben precise dell’apertura di solchi e basenii. Queste facies si distribuiscono spesso lungo gli assi paleotectonici, caratterizzanti molte basi ambientali dove esse si interdigitano in modo da costituire un “corso nodulare”- altri strutturali che potevano emergere, pendii accentuati (con apporti torbiditici e gravitativi), basenii a fondo piatto, solchi stretti.

Lo studio della «faccies griotte» del solco della Saaur (Devoniano; Sahara occidentale) permette di stabilire una relazione diretta fra: 1) il tenore in carbonati, 2) il raffronto della sedimentazione, l’intensità e la profondità della bioturbazione; 2) il grado di dissociazione degli elementi residui. In questo contesto e possibilmente riconosce un motivo deposizionale che va da calciari pseudonodulari, terminansi con dei firmgrounds ma senza perturbazione all’interno degli strati, fino a noduli residui che possono essere mescolati per mezzo di bioturbazioni consecutive.

La successione delle sequenze ritmiche del «Rosso Ammonitico», sviluppata in seno all’Unità calcarea-marina del Sentino (Toarciano dell’Appennino marchigiano), mostra che gli effetti della bioturbazione sono in stretto rapporto con il tasso di sedimentazione.

Nei solchi, più o meno isolati, si potevano differenziare faune nano.

Manoscritto presentato il 24 maggio 1984.

BIBLIOGRAPHIE

